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Abstract

The SARE Mission is for Earth Observation over Argentina. Only part
of the orbit will be fully operative. To reduce cost, mass and volume, the
same camera used to acquire the images will be used for attitude
determination. The algorithm and methodology are explained in the
present paper.

1. Introduction

All of the satellites are subject to some optimization process. Usually the safety
by reducing the single point of failure is the most common of these criteria for
medium and large spacecraft. Instead, the small and micro satellite community
uses different paradigm: reducing total cost. To achieve this goal, different
strategies have been used along the last decade. Some of them are based in
reducing the launching mass, or by shortcutting the development time. All of
these ways increase the risk of catastrophic failure without on board mitigation.
It is the typical issue in the small satellite industry.

The visual navigation methodology is addressed in the same direction we have
mentioned above: the cost reduction of the attitude control subsystem, by
reusing the image data of one of the optical cameras to be used for attitude and
orbit determination in addition to its specific purpose.

In general the optical payload is powered ON during part of the orbit, typically
over the country owner of the satellite. The precise attitude and orbit knowledge
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are necessary to geo-localize the images during this portion of the orbit. For the
rest of the time, a coarse knowledge of the spacecraft orientation and positioning
is accepted. This information can be taken from a tri-axial magnetometer, coarse
sun sensors and/or cheap gyroscopes. The small portion of mass, volume, cost
and power required for this set of sensors allows to count with them even in
micro satellites.

The usual procedure is as follows: the optical camera acquires the visible image;
the steam of bytes is stored in the mass memory, one or several X-Band
transmitter downloads the payload data when the satellite passes over the
ground station.

The proposed method consists in using the same information (image) to calculate
attitude and positioning of the spacecraft at the time the image was acquired.

Basically, the image is sent to the attitude control electronics (ACE) in addition
to the normal path, which is the mass memory destination. The image may
contain areas without information, such as clouds, sea, wider rivers, snows, etc,
which can be detected by comparing the saturation level of each pixel with the
background. It is expected that just one part of the image can be used as
attitude-orbit sensor.

It is interesting a brief discussion about this issue. As the presence of clouds does
not allow the calculation of the satellite orientation, no information is extracted.
From the science or application point of view, this image does not give any
practical information, so it is not required a precise attitude-orbit calculation.

The image data is accompanied in almost all of the cases with the output of the
on board sensors (magnetometers, coarse sun sensors, gyros, etc.), which supply
an approximate solution for the orbit location and the attitude determination.
The ongoing process is highly simplified by using this information, but the
computation should be able to work without any external aid.

With reference to the new method, there are two steps to be considered:

1. Determination of the active area. The determination is made under three
different points of view: spectral and spatial analysis and the level of
saturation of each pixel.

2. Determination of the called keypoints for a given image. These especial
features allow to identify the image even at different orientation and/or
scales.
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Figure 1: General Block Diagram.

3. Processing of these keypoints to compare them with the same contained in
a database in the EEPROM memory.

4. Based in this descriptor, the attitude and orbit is computed.

The following section takes into account each of the above steps.

2. Image Descriptors

After determining the active area of the incoming image by canceling the area
covered by clouds, by sea, etc, it is desirable to express the total image by a set
of simple descriptors called keypoints. These points play the same role than the
stars for the star tracker sensor: they have an unique geometry, which allows to
identify the attitude when compared with a known pattern. The extraction
feature is the most important step for invariant pattern recognition. This
descriptor should accomplish the following characteristics:

1. Shift Invariance: In systems theory, a transform is shift invariant iff the
transformation operator commutates with the shift operator. The
magnitude Fourier Transform is an example of shift-invariant transform.
From another point of view, a transformation is shiftable iff the coefficient
energy in each transform subband is conserved under input-signal shifts. A
transformation is shift sensitive because an input-shift generates
unpredictable changes in the descriptor coefficients.

2. Rotation Invariance: If the function is rotated an angle, the descriptor
coefficients are rotated the same angle. Fourier Transform is a good
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example of rotation invariant.

3. Scale Invariant: This property is very important in case of having image
at different altitudes. It is expected that global descriptors like Fourier
Transform can be affected in their coefficients by a local variation.

The selected descriptor should be invariant to translation, rotation and scaling to
be used in real time on board a satellite. The discrete Fourier Transform and the
Wavelets Transform have been analyzed as potential representation of the image.

2.1. Fourier Transform

A continuous function can be approximated by samples and the approximation of
the Fourier integral by the discrete Fourier Transform requires applying a matrix
whose order is the number of sample points n. If the samples are uniformly
spaced, then the Fourier matrix can be factored into a product of just a few
sparse matrices, and the resulting factors can be applied to a vector in an
arithmetic operation of total order O (n log2 n). This is the so-called Fast Fourier
Transform (FFT). By defnition the FFT is translation invariant. The rotation
invariance is obtained by transforming the image representation from Cartesian
to Polar coordinates. It is clear that the rotation in polar frame is a translation.
A second FFT over the polar represented image gives the desired descriptor for
pattern recognition. This process is highly computationally expensive.

2.2. Wavelets Transform

The wavelets are functions that satisfy certain mathematical requirements. The
fast wavelet transform is actually more computationally efficient than the FFT:
for the same length, n, t requires approximately O (n) operations. It is well
known that the ordinary discrete wavelets transform is not shift invariant,
because the decimation operation during the transform. This is the main
limitation in pattern recognition. Kingsbury in ((? )), introduced a new kind of
wavelets transform, called the Dual Tree Complex Wavelets Transform
(DTCWT) that exhibits approximate shift invariant property and improved
angular resolution. The DTCWT can be successfully used in invariant feature
extraction for pattern recognition.
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Figure 2: Wavelets Decomposition

Figure 3: Twelve wavelets associated with the Dual Tree Wavelets. The angles are
15◦, 45◦, 75◦, 105◦, 135◦, 165◦.
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2.3. Keypoint Detection

. We mean typically blobs, junctions and corners when refering to keypoints.
Wavelets transform provides a powerful framework to decompose image into
different scales and orientations. The DTCWT are the ideal candidate for
multiscale, robust and computationally efficient keypoint detection, which are
desirable properties for visual recognition tasks.

In the approach described in ((4)) the keypoint energy measured from the
decimated DTCWT coefficients at different scales is accumulated into a single
smooth energy map. This accumulated map plays key role since its peaks define
the keypoint location and its gradient is used to derive the keypoint scales.

Given an image of w × h pixels, the DTCWT decomposition results in a
decimated dyadic decomposition s = 1, . . . m scales, where each scale is of size
w
2s × h

2s . At each decimated location of each scale, we have a set C of 6 complex
coefficients corresponding to responses to the 6 subband orientations, namely
15◦, 45◦, 75◦, 105◦, 135◦, 165◦. The directional information is useful to design a
keypoint energy measure that emphasises the presence of a keypoint while
ignoring edges and uniform areas. Fauquer at al. introduced the following
keypoint energy measure that we propose based on the product of all six
subbands magnitudes:

E(C) = αs

(
6∏

b=1

ρb

)β

(1)

where α is set to 1 and β = 1.4 following ((4)). Under these calculations m
decimated energy maps M1, . . . , Mm are produced by calculating E(C) for all
the coefficients at each scale of the DTCWT decomposition. To obtain accurate
keypoint localization from the decimated maps Ms the procedure suggested by
Fauqueur, et. al. is copied below for simplicity.

Let fs (Ms) be the 2D Gaussian kernel interpolation up to the original image
size. Let us define the accumulated energy map of the image as the sum of the
interpolated maps from scales 1 to m

A =
m∑

s=1

fs (Ms) (2)

It is defined the keypoint locations as the peak location in A, by simple detecting
where energy values in A are maximum on a 3 × 3 neighborhood.
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3. Matching Graphs

After the keypoints have been determined, the next step in our algorithm is the
calculation of the mismatching between the incoming image and one of the stored
ones. To this end, the set of keypoints are used to create weighted finite graphs.
This process of matching graphs is a NP-complete problem, which is a clear
indication of the computational effort with a reasonable number of keypoints.

In ((3)) the algorithm to match two graphs: G and g is described. Both graphs
may be sparse and whose links may take values in R, the match matrix M is
selected to minimized the following objective function,

Ewg (M) = −1

2

A∑
a=1

I∑
i=1

A∑
b=1

I∑
j=1

Mai Mbj Caibj (3)

where, A and I are the nodes respectively and Caibj is defined as, Caibj = 0 if
either Gab or gij is null or Caibj = 0(̧Gab, gij) otherwise. The Gab and gij are the
adjacency matrices of the graphs, whose elements may be in R. The function
c(., .) is chosen as a measure of the compatibility between the links of the two
graphs. The matrix M indicates which nodes in the two graphs match, Mai = 1
if node a in G corresponds to node i in g, and Mai = 0 otherwise.

This algorithm is O(lm) with l and m the number of elements of each graph.
The asymptotic order is appropriated for our application. The algorithm
presented in ((? )) is implemented.

4. Separating Orbit Positioning and Attitude

Errors

After the graph matching process is finished, between the incoming and the
stored images, the attitude error and orbit positioning error should be calculated.

In order to separate the ephemeris error from the attitude error as much as
possible, we should first use the most precise ephemeris data available and
correct systematic errors with available models. The presence of GPS receiver is
highly desired on board. Second we should use available a priori information in
addition to the observation to cure the ill-condition of the normal equation in
statistical estimation.
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This problem can be solved from different approaches. In general we have the
observation equation,

Y = H X + ε (4)

with E [ε] = 0, and Cov[ε] = s2 C. The a priori information of the parameter is
given by

x = X + εx (5)

with E [εx] = 0, and Cov[εx] = q2 Cx.

The BLUE estimator x̂ can be calculated as,(
s−2 H C−1 H + q−2 C−1

x

)
x̂ =

(
s−2 H C−1

)
Y +

(
q−2 H C−1

x

)
X (6)

with a covariance matrix of,

Cov [x̂] =
(
s−2 H C−1 H + q−2 C−1

x

)−1
(7)

5. Conclusion

The optical camera plus an appropriate algorithm running in the AOCS
computer allows to replace or at least be a backup for the star tracker in some
Earth observation missions. The software explained in this paper is conceptually
complex, but the implementation can be done in simple electronics cards such a
FPGA device. The attitude and orbit solution is under normal circumstances
computed each 5 seconds, wich is enough for this kind of application.

References

[1] David G. Lowe. Distintitive Image Features from Scale-Invariant Keypoints.
In International Journal of Computer Vision ’04 Vol. 60, no 2 pp 91-110,
2004.

[2] N.G.Kingsbury. Complex wavelets for Shift Invariant Analysis and Filtering
of Signals. In Journal of Applied and Computational Harmonic Analysis ’01
Vol. 10, no 3 pp 234-253, 2001.

[3] Steven Gold and Anand Rangarajan. A graduated Assignment Algorithm
for Graph Matching. In IEEE Transactions on Pattern Analysis and
Machine Intelligence ’96 Vol. 18, no 4 pp 377-388, 1996.

viii



[4] Fauqueur Julien, Nick Kingsbury and Ryan Anderson. Multiscale Keypoint.
In IEEE International Conference on image Processing ’06 2006.

ix


